The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span.

نویسندگان

  • Kailiang Jia
  • Di Chen
  • Donald L Riddle
چکیده

The highly conserved target-of-rapamycin (TOR) protein kinases control cell growth in response to nutrients and growth factors. In mammals, TOR has been shown to interact with raptor to relay nutrient signals to downstream translation machinery. We report that in C. elegans, mutations in the genes encoding CeTOR and raptor result in dauer-like larval arrest, implying that CeTOR regulates dauer diapause. The daf-15 (raptor) and let-363 (CeTOR) mutants shift metabolism to accumulate fat, and raptor mutations extend adult life span. daf-15 transcription is regulated by DAF-16, a FOXO transcription factor that is in turn regulated by daf-2 insulin/IGF signaling. This is a new mechanism that regulates the TOR pathway. Thus, DAF-2 insulin/IGF signaling and nutrient signaling converge on DAF-15 (raptor) to regulate C. elegans larval development, metabolism and life span.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNAs Both Promote and Antagonize Longevity in C. elegans

BACKGROUND aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span. RESULTS here we show that multiple miRNAs change expression in C. elegans aging, including novel miRNAs, and that mutations in several ...

متن کامل

TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO.

The TOR kinase, which is present in the functionally distinct complexes TORC1 and TORC2, is essential for growth but associated with disease and aging. Elucidation of how TOR influences life span will identify mechanisms of fundamental importance in aging and TOR functions. Here we show that when TORC1 is inhibited genetically in C. elegans, SKN-1/Nrf, and DAF-16/FoxO activate protective genes,...

متن کامل

Nucleolar GTPase NOG-1 Regulates Development, Fat Storage, and Longevity through Insulin/IGF Signaling in C. elegans

NOG1 is a nucleolar GTPase that is critical for 60S ribosome biogenesis. Recently, NOG1 was identified as one of the downstream regulators of target of rapamycin (TOR) in yeast. It is reported that TOR is involved in regulating lifespan and fat storage in Caenorhabditis elegans. Here, we show that the nog1 ortholog (T07A9.9: nog-1) in C. elegans regulates growth, development, lifespan, and fat ...

متن کامل

A developmental timing microRNA and its target regulate life span in C. elegans.

The microRNA lin-4 and its target, the putative transcription factor lin-14, control the timing of larval development in Caenorhabditis elegans. Here, we report that lin-4 and lin-14 also regulate life span in the adult. Reducing the activity of lin-4 shortened life span and accelerated tissue aging, whereas overexpressing lin-4 or reducing the activity of lin-14 extended life span. Lifespan ex...

متن کامل

An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans.

Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 131 16  شماره 

صفحات  -

تاریخ انتشار 2004